Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

IInternational Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Monthly Journal for Mechanical and Civil Engineering

ISSN : 2456-1290 (Online)

Study on Production Methods of Titanium Sponge

Author : S. Sai Harsha 1 P.V. Chandra Sekhara Rao 2

Date of Publication :18th May 2022

Abstract: — Titanium sponge is a porous type of titanium generated during the first stage of the manufacturing process. The titanium sponge is a major raw material used in the production of ingots or slabs during the melting process. It comes in a variety of grades, each with varying degrees of impurities. This paper's main goal is to overview and compare various production methods of titanium sponge individually. And we have tried to discuss the properties, advantages, and disadvantages of those processes, and also mentioned their applications. The various production methods of titanium sponge are divided into batches based on their manufacturing process such as the Kroll process, Hunter process, and Electrolysis process comes under conventional methods, FFC, OS, QIT, etc. are the Electrochemical process.

Reference :

    1. J. C. W. and A. G. G. Lutjering, "Microstructure and Mechanical Properties of Titanium Alloys", vol. 45, no. 5. Hamburg, 2016.
    2. C. R. V. S. Nagesh, C. S. Ramachandran, and R. B. Subramanyam, “Methods of titanium sponge production,” Trans. Indian Inst. Met.,vol.61,no.5, pp. 341–348,2008, DOI:10.1007/s12666-008-0065- 7.
    3. Ho-Sang Sohn, “Production Technology of Titanium by Kroll Process,” J. Korean Inst. Resources Recycl., vol. 29, no. 4, pp. 3–14, 2020, DOI: 10.7844/kirr.2020.29.4.3.
    4. E. R. Poulsen and J. A. Hall, “Extractive Metallurgy of Titanium: A Review of the State of the Art and Evolving Production Techniques,” JOM J. Miner. Met. Mater. Soc., vol. 35, no. 6, pp. 60–65, 1983, DOI: 10.1007/ BF03338304.
    5. K. Nakamura, T. Iida, N. Nakamura, and T. Araike, “Titanium sponge production method by Kroll process at OTC,” Mater. Trans., vol. 58, no. 3, pp. 319–321, 2017, DOI: 10.2320/matertrans.MK201634.
    6. C. R. NAGESH and C. S. RAMACHANDRAN, “Electrochemical process of titanium extraction,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 17, no. 2, pp. 429–433, 2007, DOI: 10.1016/S1003-6326(07) 60110-1.
    7. C. R. V. S. Nagesh, C. S. Rao, N. B. Ballal, and P. K. Rao, “Mechanism of Titanium Sponge Formation in the Kroll Reduction Reactor,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 35, no. 1, pp. 65–74, 2004, DOI: 10.1007/s11663-004-0097-2.
    8. F. S. Wartman, J. R. Nettle, V. E. Homme, and B. City, “S o m e O b s e r v a t i o n s on the K r o l l P r o c e s s for Titanium ’.”
    9. F. Gao et al., “Environmental impacts analysis of titanium sponge production using Kroll process in China,” J. Clean. Prod., vol. 174, pp. 771–779, 2018, DOI: 10.1016/j. jclepro.2017.09.240.
    10. Quebec, “A Method for Electrowinning of Titanium Metal or Alloy from Titanium Oxide Containing Compound in the Liquid State,” 2003
    11. M. R. Earlam, The Kroll process and production of titanium sponge. Elsevier Inc., 2019
    12. L. Li, K. Li, X. Chen, Y. Yang, C. Sun, and Q. Miao, “Reduction product separation by vacuum distillation in the process of titanium sponge preparation,” TMS Annu. Meet., pp. 107–114, 2014, DOI: 10.1002/9781118887998 .ch14.
    13. P. C. Turner, J. S. Hansen, and S. J. Gerdemann, “Low-Cost Titanium - Myth or Reality,” 2001.
    14. Canadian Patent Application, “A Method for the Continuous Electrowinning of Pure Titanium Metal from Titanium Slag, Ilmenite, and other Semiconductor Titanium Oxide Compounds,” 2363647, 2003.
    15. G. Z. Chen, D. J. Fray, and T. W. Farthing, “Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride,” Nature, vol. 407, pp. 361– 364, 2000.
    16. B. Wang, L. Zhou, X. Lan, X. Zhao, and J. Cui, “Cathode preparation of electrochemical reduction process of TiO2 to titanium,” Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., vol. 39, no. 9, pp. 1513–1518, 2010, DOI: 10.1016/s1875-5372(10)60121-x.
    17. K. S. Mohandas and D. J. Fray, “FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: An overview,” Trans. Indian Inst. Met., vol. 57, no. 6, pp. 579–592, 2004.
    18. G. Z. Chen, “the Ffc Cambridge Process for Metal Production: Principle, Practice and Prospect,” 3rd Int. Slag Valoris. Symp., pp. 217–233, 2013.
    19. R. O. Suzuki, “Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2,” J. Phys. Chem. Solids, vol. 66, no. 2–4, pp. 461–465, 2005, DOI: 10.1016/j.jpcs.2004.06.041.
    20. Ryosuke O. Suzuki and Katsutoshi Ono, “A New Concept of Sponge Titanium Production by Calciothermic Reduction of Titanium Oxide in the Molten Cacl2.”
    21. X. Xu, P. Nash, and D. Mangabhai, “Characterization and Sintering of Armstrong Process Titanium Powder,” Jom, vol. 69, no. 4, pp. 770–775, 2017, DOI: 10.1007/s11837- 016-2238-x.
    22. Jonathan P. Blank, “Effect of Boron Additions on Microstructure & Mechanical Properties of Titanium Alloys Produced By The Armstrong Process,” 2008. [23] EHK TECHNOLOGIES, “summary of Emerging Titanium Cost Reduction Technologies,” 2004.
    23.  A. Fuwa and S. Takaya, “Producing titanium by reducing TiCl2-MgCl2 mixed salt with magnesium in the molten state,” Jom, vol. 57, no. 10, pp. 56–60, 2005, DOI: 10.1007 /s11837-005-0153-7.
    24. K. Ono and R. O. Suzuki, “A new concept for producing Ti sponge: Calciothermic reduction,” Jom, vol. 54, no. 2, pp. 59–61, 2002, DOI: 10.1007/BF02701078.
    25. H. Agripa and I. Botef, “Modern Production Methods for Titanium Alloys: A Review,” Titan. Alloy. - Nov. Asp. Their Manuf. Process. [Working Title], vol. 1, pp. 1–15, 2019, DOI: 10.5772/intechopen.81712.
    26. M. A. Hunter, “Metallic titanium,” J. Am. Chem. Soc., vol. 32, no. 3, pp. 330–336, 1910, DOI: 10.1021/ja01921a006.
    27. T. Habu, Fabrication of shape memory alloy parts. Woodhead Publishing Limited, 2008.
    28. C. R. V. S. Nagesh, T. S. Sitaraman, C. S. Ramachandran, and R. B. Subramanyam, “Development of indigenous technology for production of titanium sponge by the Kroll process,” Bull. Mater. Sci., vol. 17, no. 6, pp. 1167–1179, 1994, DOI: 10.1007/BF02757594.
    29. P. S. and U. S. V.Ananth, S.Rajagopan, “Single-Step Electrolytic Production of Titanium.,” vol. 51, no. 5, pp. 399–403, 1998.
    30. E. Platacis, I. Kaldre, E. Blumbergs, L. Goldšteins, and V. Serga, “Titanium production by magnesium thermal reduction in the electroslag process,” Sci. Rep., vol. 9, no. 1, pp. 1–13, 2019, DOI: 10.1038/s41598-019-54112-2.
    31. A. Sathyapalan, M. Free, and Z. Fang, “Exploring Alternative Methods for Titanium Production,” Proc. 13th World Conf. Titan., pp. 129–133, 2016, DOI: 10.1002/9781119296126.ch19.
    32. D. J. Fray, “Novel methods for the production of titanium,” Int. Mater. Rev., vol. 53, no. 6, pp. 317–325, 2008, DOI: 10.1179/174328008X324594.
    33. D. MacDonald, R. Fernández, F. Delloro, and B. JoDOIn, “Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing,” J. Therm. Spray Technol., vol. 26, no. 4, pp. 598–609, 2017, DOI: 10.1007/s11666-016- 0489-2.
    34. S. Y. and H. C. Seungwoopaek, Do-Hee Ahn, kwang-Rak, “Characteristics of Titanium Sponge for The Storage Of Hydrogen Isotopes: Ii.Hydriding Properties.,” J. Ind. Eng. chem, vol. 10, no. 4, pp. 539–543, 2004.
    35. I. L. Zoya Duriagina, Andriy Trostyanchyn, “The Influence of Chemical-Thermal Treatment on Granulometric Characteristics,” Ukr. J. Mech. Eng. Mater. Sci., vol. 3, no. 1, pp. 73–80, 2017.
    36. I. Berezin, A. Nesterenko, A. Zalazinskii, and G. Kovacs, “Influence of stress state conditions on densification behavior of titanium sponge,” Acta Polytech. Hungarica, vol. 14, no. 6, pp. 153–168, 2017, DOI: 10.12700/APH. 14.6.2017.6.9.
    37. I. S. Trakhtenberg et al., “Mechanical properties and the structure of porous titanium obtained by sintering compacted titanium sponge,” Phys. Met. Metallogr., vol. 105, no. 1, pp. 92–97, 2008, DOI: 10.1134/s0031918x0 8010109
    38. O. F. Eutectic, A. Ti, Z. Mn, O. Using, and T. Sponge, “Structure, Phase Composition, and Hydrogen Sorption Properties,” vol. 80, no. 3, pp. 78–80, 2019.
    39. S. Paek, D. H. Ahn, K. R. Kim, and H. Chung, “Properties of titanium sponge bed for tritium storage,” Fusion Sci. Technol., vol. 41, no. 3 II, pp. 788–792, 2002, DOI: 10.13182/fst02-a22692.
    40. G. Brooks, M. Cooksey, G. Wellwood, and C. Goodes, “Challenges in light metals production,” Trans. Institutions Min. Metall. Sect. C Miner. Process. Extr. Metall., vol. 116, no. 1, pp. 25–33, 2007, DOI: 10.1179/174328507X1 63733.
    41. V. V. K. Prasad Rambabu, N. Eswara Prasad, and R. J. H. Wanhill, “Aerospace Materials and Material Technologies, Volume 1: Aerospace Material Technologies,” Aerosp. Mater. Mater. Technol. Vol. 1 Aerosp. Mater., vol. 1, no. May, p. 586, 2017, DOI: 10.1007/978-981-10-2134-3.
    42. A. Hadadzadeh, M. A. Whitney, M. A. Wells, and S. F. Corbin, “Analysis of compressibility behavior and development of a plastic yield model for uniaxial die compaction of sponge titanium powder,” J. Mater. Process. Technol., vol. 243, pp. 92–99, 2017, DOI: 10.1016/j.jmatprotec.2016.12.004.
    43. M. Zadra, “Facile mechanical alloying of titanium sponge,” Mater. Sci. Eng. A vol. 590, pp. 281–288, 2014, DOI: 10.1016/j.msea.2013.10.040.
    44. N. W. Wang and J. X. Zou, “Simulation of Temperature Field of Sponge Titanium Prepared by Magnesium Thermal Reduction Process,” no. Iwmce, pp. 392–398, 2018, DOI: 10.5220/0007439303920398.
    45. S. N. Tedman-Jones, M. J. Bermingham, S. D. McDonald, D. H. StJohn, and M. S. Dargusch, “Titanium sponge as a source of native nuclei in titanium alloys,” J. Alloys Compd., vol. 818, p. 153353, 2020, DOI: 10.1016/j.jallcom.2019.153353.
    46. R. B. Subramanyam, C. S. Rao, T. S. Sitaraman, S. R. Bera, and K. N. Raoot, “Development of Titanium Sponge Production Technology in India,” High Temp. Mater. Process., vol. 9, no. 2–4, pp. 195–200, 1990, DOI: 10.1515/HTMP.1990.9.2-4.195
    47. W. Zhang, Z. Zhu, and C. Y. Cheng, “A literature review of titanium metallurgical processes,” Hydrometallurgy, vol. 108, no. 3–4, pp. 177–188, 2011, DOI: 10.1016/j. hydromet.2011.04.005.
    48. E. S. Obodovskii and A. M. Laptev, “Effect of Technological Factors on The Properties of High-Density Titanium Sponge Compacts,” Plenum Publ. Corp., vol. 4, no. 4, pp. 295–299, 1987.
    49. National Minerals Information Center. Commodity Statistics and Information. (n.d.). 
    50. C. G. McCracken, D. P. Barbis, and R. C. Deeter, “Key characteristics of hydride - Dehydride titanium powder,” Powder Metall., vol. 54, no. 3, pp. 180–183,2011,DOI:10. 1179/174329011X13045076771849.
    51. Z. Fan, H. J. Niu, A. P. Miodownik, T. Saito, and B. Cantor, “Microstructure and mechanical properties of in situ Ti/TiB MMCs produced by a blended elemental powder metallurgy method,” Key Eng. Mater., vol. 127– 131, pp. 423–430, 1997, 
    52. F. H. Froes and D. Eylon, “Powder -metallurgy of titanium alloys,” Struct. Biomater., vol. 35, no. 3, pp. 163– 184,2021,DOI:10.1016/b978-0-12-818831-6.00004-5.
    53. C. Veiga, A. J. R. Loureiro, and J. P. Davim, “Properties and applications of titanium alloys,” Rev. Adv. Mater. Sci., vol. 32, p. s. 133-148, 2012.
    54. G. Granata, Y. Kobayashi, R. Sumiuchi, and A. Fuwa, “An innovative electro-winning process for titanium production,” TMS Annu. Meet., pp. 19–23, 2014, DOI: 10.1002/9781118887998.ch3. 
    55. J.-Y. H. Tao Jiang and G. Z. Mark E. Schlesinger, Onuralp Yucel, Rafael Padilla, Phillip J. Mackey, Eds., 5th International Symposium on High-Temperature Metallurgical Processing. USA, 2014.

Recent Article