Open Access Journal

ISSN : 2456-1290 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Monthly Journal for Mechanical and Civil Engineering

ISSN : 2456-1290 (Online)

Reference :

    1. Ekaso, D., Nex, F. and Kerle, N. (2020) „Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing‟, Geo-Spatial Information Science, 23(2), pp. 165–181. doi: 10.1080/ 10095020.2019.1710437.
    2. Piermattei, L. et al. (2018) „Impact of the acquisition geometry of very high-resolution Pléiades imagery on the accuracy of canopy height models over forested alpine regions‟, Remote Sensing, 10(10). doi: 10.3390/rs10101542.
    3. Tomaštík, J. et al. (2019) „UAV RTK/PPK method-An optimal solution for mapping inaccessible forested areas?‟, Remote Sensing, 11(6). doi: 10.3390/RS11060721.
    4. Matasci, G.; Hermosilla, T.;Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S.J. (2018) „Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots‟. Remote Sens. Environ, 209, 90–106.
    5. Gabrlik, P.,A. Jelinek, and P. Janata. 2016. “PreciseMulti-Sensor Georeferencing System for Micro UAVs.” IFACPapersOnLine 49: 170–175. doi:10.1016/j. ifacol.2016.12.029.
    6. Jóźków, G., and C. Toth. 2014. “Georeferencing Experiments with UAS Imagery.” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-1: 25–29. doi:10.5194/isprsannals-ii-1-25-2014.
    7. Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens. Environ. 2006, 102, 390– 401.
    8. Neigh, C.; Masek, J.; Bourget, P.; Cook, B.; Huang, C.; Rishmawi, K.; Zhao, F.; Neigh, C.S.R.; Masek, J.G.; Bourget, P.; et al. Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with [9] G-LiHT Airborne LiDAR. Remote Sens. 2014, 6, 1762–1782.
    9. Mostafa, M. M. R., and J. Hutton. 2001. “Direct Positioning and Orientation Systems. How Do They Work? What Is the Attainable Accuracy.” In Proceedings, American Society of Photogrammetry and Remote Sensing AnnualMeeting.
    10. Chiang, K. W., M. L. Tsai, and C. H. Chu. 2012. “The Development of an UAV Borne Direct Georeferenced
    11. Photogrammetric Platform for Ground Control Point Free Applications.” Sensors (Switzerland) 12: 9161–9180. doi:10. 3390/s120709161.
    12. Cramer, M., D. Stallmann, and N. Haala. 2000. “Direct Georeferencing Using GPS/inertial Exterior Orientations for Photogrammetric Applications.” International Archives of the Photogrammetry, Remote Sensing 33: 198–205. doi:10. 1017/CBO9780511777684.
    13. Mian, O., J. Lutes, G. Lipa, J. J. Hutton, E. Gavelle, and S. Borghini. 2015. “Direct Georeferencing on Small Unmanned Aerial Platforms for Improved Reliability and Accuracy of Mapping without the Need for Ground Control Points.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archive XL-1/W4: 397–402. doi:10.5194/isprsarchives-XL-1-W4- 397-2015
    14. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorph. 2012, 179, 300–314.doi:10.1016/j.geomorph. 2012.08.021
    15. Eisenbeiss, H.; UAV Photogrammetry. PhD thesis, ETH Zürich, Zürich, Switzerland, 2009

Recent Article